Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 266: 115604, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37871562

RESUMO

Magnetotactic bacteria (MTB) can rapidly relocate to optimal habitats by magnetotaxis, and play an important role in iron biogeochemical cycling. This study aimed to evaluate the contribution of the external magnetostatic field to the diversity of MTB in freshwater sediments from Yangtze River (Changjiang River, CJ), Chagan Lake (CGH) and Zhalong Wetland (ZL). The magnetic field intensity was tightly associated with the community richness of MTB in CJ, whereas it was closely related to the diversity of MTB in CGH and ZL (p < 0.05), elucidating a significant variation in the community composition of MTB. Magnetic exposure time appeared more significant correlation with community richness than diversity for MTB in CJ and CGH (p < 0.05), while an opposite relationship existed in ZL (p < 0.01). Herbaspirillum (93.81-96.48 %) dominated in the sediments of these surfacewatesr regardless of waterbody types, while it shifted to Magnetospirillum in ZL under 100 Gs magnetic field. The network connectivity and stability of MTB deteriorate with the increase of magnetic field intensity. Functional analysis showed that the Two-component system and ABC transporter system of MTB obviously responded to magnetic field intensity and exposure time. Our findings will pave the way to understanding the response mechanism of MTB community in freshwater sediments to the external magnetostatic field.


Assuntos
Lagos , Rios , Lagos/microbiologia , Áreas Alagadas , Filogenia , Bactérias/genética , Campos Magnéticos , China , Sedimentos Geológicos/microbiologia
2.
Microbiol Spectr ; 11(6): e0172923, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37800960

RESUMO

IMPORTANCE: As the most important non-magnetotactic magnetosome-producing bacteria, Acidithiobacillus ferrooxidans only requires very mild conditions to produce Fe3O4 nanoparticles, thus conferring greater flexibility and potential application in biomagnetic nanoparticle production. However, the available information cannot explain the mechanism of Fe3O4 nanoparticle formation in A. ferrooxidans. In this study, we applied phenomic and transcriptomic analyses to reveal this mechanism. We found that different treatment condition factors notably affect the phenomic data of Fe3O4 nanoparticle in A. ferrooxidans. Using transcriptomic analyses, the gene network controlling/regulating Fe3O4 nanoparticle biogenesis in A. ferrooxidans was proposed, excavating the candidate hub genes for Fe3O4 nanoparticle formation in A. ferrooxidans. Based on this information, a sequential model for Fe3O4 nanoparticle synthesis in A. ferrooxidans was hypothesized. It lays the groundwork for further clarifying the feature of Fe3O4 nanoparticle synthesis.


Assuntos
Magnetossomos , Nanopartículas , Fenômica , Magnetossomos/genética , Perfilação da Expressão Gênica
3.
ACS Appl Mater Interfaces ; 15(17): 21403-21412, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37071031

RESUMO

High power density capacitors have been highly demanded in modern electronics and pulsed power systems. Yet the long-standing challenge that restricts achieving high power in capacitors lies in the inverse relationship between the breakdown strength and permittivity of dielectric materials. Here, we introduce poly(vinylidene fluoride-co-trifluoroethylene) (PVDF-TrFE) into the host poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) to produce PVDF-based copolymer blends, resulting in composition-driven 0-3 type microstructures, featuring nanospheres of P(VDF-TrFE) lamellar crystals dispersed homogeneously in a P(VDF-HFP) matrix together with crystalline phase evolution from the γ-phase to the α-phase. At the critical composition, the TrFE/HFP mole ratio is equal to 1, and the blend film achieves maximum energy storage performance with discharged energy density (Udis) ∼ 24.3 J/cm3 at 607 MV/m. Finite element analyses reveal the relationship between microstructures, compositions, and the distribution of local electric field and polarization, which provide an in-depth understanding of the microscopic mechanism of the enhancement in energy storage capability of the blend films. More importantly, in a practical charge/discharge circuit, the blend film could deliver an ultrahigh energy density of 20.4 J/cm3, i.e., 88.3% of the total stored energy to 20 kΩ load in 2.8 µs (τ0.9), resulting a high power density of 7.29 MW/cm3, outperforming the reported dielectric polymer-based composites and copolymer films in both energy and power densities. The study thus demonstrates a promising strategy to develop high-performance dielectrics for high power capacitors.

4.
Food Funct ; 14(6): 2568-2585, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36857725

RESUMO

Nattokinase (NK) is an alkaline serine protease with strong thrombolytic activity produced by Bacillus spp. or Pseudomonas spp. It is a potential therapeutic agent for thrombotic diseases because of its safety, economy, and lack of side effects. Herein, a comprehensive summary and analysis of the reports surrounding NK were presented, and the physical-chemical properties and producers of NK were first described. The process and mechanism of NK synthesis were summarized, but these are vague and not specific enough. Further results may be achieved if detection techniques such as multi-omics are used to explore the process of NK synthesis. The purification of NK has problems such as a complicated operation and low recovery rate, which were found when summarizing the techniques to improve the quality of finished products. If multiple simple and efficient precipitation methods and purification materials are combined to purify NK, it may be possible to solve the current challenges. Additionally, the application potential of NK in biomedicine was reviewed, but functional foods with NK are challenging for acceptance in daily life due to their unpleasant odor. Accordingly, multi-strain combination fermentation or food flavoring agents can improve the odor of fermented foods and increase people's acceptance of them. Finally, the possible future directions focused on NK studies were proposed and provided suggestions for subsequent researchers.


Assuntos
Bacillus , Trombose , Humanos , Trombose/tratamento farmacológico , Subtilisinas/química , Fibrinolíticos
6.
Biosensors (Basel) ; 12(8)2022 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-36005014

RESUMO

In this study, we used three-dimensional (3D) printing to prepare a template of a microfluidic chip from which a polydimethylsiloxane (PDMS)lung chip was successfully constructed. The upper and lower channels of the chip are separated by a microporous membrane. The upper channel is seeded with lung cancer cells, and the lower channel is seeded with vascular endothelial cells and continuously perfused with cell culture medium. This lung chip can simulate the microenvironment of lung tissue and realize the coculture of two kinds of cells at different levels. We used a two-dimensional (2D) well plate and a 3D lung chip to evaluate the effects of different EGFR-targeting drugs (gefitinib, afatinib, and osimertinib) on tumor cells. The 3D lung chip was superior to the 2D well plate at evaluating the effect of drugs on the NCI-H650, and the results were more consistent with existing clinical data. For primary tumor cells, 3D lung chips have more advantages because they simulate conditions that are more similar to the physiological cell microenvironment. The evaluation of EGFR-targeted drugs on lung chips is of great significance for personalized diagnosis and treatment and pharmacodynamic evaluation.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Células Endoteliais , Receptores ErbB/uso terapêutico , Humanos , Dispositivos Lab-On-A-Chip , Pulmão , Neoplasias Pulmonares/tratamento farmacológico , Microambiente Tumoral
7.
Gels ; 8(8)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36005114

RESUMO

This Special Issue includes many advanced high-quality papers that focus on gel applications in the oil and gas industry [...].

8.
Gels ; 8(6)2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35735719

RESUMO

Inaccessible pore volume (IAPV) can have an important impact on the placement of gelant during in situ gel treatment for conformance control. Previously, IAPV was considered to be a constant factor in simulators, yet it lacked dynamic characterization. This paper proposes a numerical simulation model of IAPV. The model was derived based on the theoretical hydrodynamic model of gelant molecules. The model considers both static features, such as gelant and formation properties, and dynamic features, such as gelant rheology and retention. To validate our model, we collected IAPV from 64 experiments and the results showed that our model fit moderately into these lab results, which proved the robustness of our model. The results of the sensitivity test showed that, considering rheology and retention, IAPV in the matrix dramatically increased when flow velocity and gelant concentration increased, but IAPV in the fracture maintained a low value. Finally, the results of the penetration degree showed that the high IAPV in the matrix greatly benefited gelant placement near the wellbore situation with a high flow velocity and gelant concentration. By considering dynamic features, this new numerical model can be applied in future integral reservoir simulators to better predict the gelant placement of in situ gel treatment for conformance control.

9.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 38(5): 590-594, 2022 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-37088775

RESUMO

OBJECTIVE: To investigate the effects of down-regulating MDR1 gene expression by CRISPRi on enhancing the sensitivity of lung adenocarcinoma A549/DDP cells to cisplatin. METHODS: The potential CRISPRi interference sites on the MDR1 gene promoter were predicted by bioinformatics software, and the interference fragments were designed and constructed. The mRNA and protein expression levels of MDR1 gene in each group of cells were detected by qRT-PCR and Western blot methods, and the recombinant vectors with high interference efficiency were screened. Human lung cancer A549/DDP cells were divided into three groups: A549/DDP, Scrambed and sgRNA-MDR1-1, with three multiple holes in each group. After each vector was transfected into the cells for 48 h, the efflux of cells in each group was detected by flow cytometry, the IC50 value of cells in each group was detected by MTT method, and the cell morphology of cells treated with cisplatin was observed under laser confocal microscope. RESULTS: After sequencing and comparison, two kinds of CRISPRi recombinant vectors interfering with MDR1 gene transcription were constructed successfully. After transfection of A549/DDP cells, the mRNA and protein levels of MDR1 gene in all transfection groups were decreased significantly (P< 0.01). Among them, the interference efficiency of sgRNA-MDR1-1 was the highest, and the interference efficiency of mRNA and protein was 60% and 51%, respectively. After transfection of sgRNA-MDR1-1 vector, compared with the control group, the efflux ability of cells was decreased (P<0.01), the IC50 value of cells to cisplatin was decreased significantly (P<0.01), and the intracellular chromatin gathered and marginalized, and apoptotic bodies appeared. CONCLUSION: CRISPRi interference with MDR1 gene in drug-resistant A549/DDP cells can significantly enhance the sensitivity to cisplatin.


Assuntos
Adenocarcinoma de Pulmão , Antineoplásicos , Neoplasias Pulmonares , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Antineoplásicos/farmacologia , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Apoptose , Adenocarcinoma de Pulmão/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , RNA Mensageiro , Expressão Gênica
10.
Biosensors (Basel) ; 11(10)2021 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-34677355

RESUMO

In this study, we designed and manufactured a series of different microstructure topographical cues for inducing neuronal differentiation of cells in vitro, with different topography, sizes, and structural complexities. We cultured PC12 cells in these microstructure cues and then induced neural differentiation using nerve growth factor (NGF). The pheochromocytoma cell line PC12 is a validated neuronal cell model that is widely used to study neuronal differentiation. Relevant markers of neural differentiation and cytoskeletal F-actin were characterized. Cellular immunofluorescence detection and axon length analysis showed that the differentiation of PC12 cells was significantly different under different isotropic and anisotropic topographic cues. The expression differences of the growth cone marker growth-associated protein 43 (GAP-43) and sympathetic nerve marker tyrosine hydroxylase (TH) genes were also studied in different topographic cues. Our results revealed that the physical environment has an important influence on the differentiation of neuronal cells, and 3D constraints could be used to guide axon extension. In addition, the neurotoxin 6-hydroxydopamine (6-OHDA) was used to detect the differentiation and injury of PC12 cells under different topographic cues. Finally, we discussed the feasibility of combining the topographic cues and the microfluidic chip for neural differentiation research.


Assuntos
Diferenciação Celular , Sinais (Psicologia) , Neurônios , Animais , Células PC12 , Ratos
11.
Lab Chip ; 21(9): 1634-1660, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33705507

RESUMO

COVID-19 is an acute respiratory disease caused by SARS-CoV-2, which has high transmissibility. People infected with SARS-CoV-2 can develop symptoms including cough, fever, pneumonia and other complications, which in severe cases could lead to death. In addition, a proportion of people infected with SARS-CoV-2 may be asymptomatic. At present, the primary diagnostic method for COVID-19 is reverse transcription-polymerase chain reaction (RT-PCR), which tests patient samples including nasopharyngeal swabs, sputum and other lower respiratory tract secretions. Other detection methods, e.g., isothermal nucleic acid amplification, CRISPR, immunochromatography, enzyme-linked immunosorbent assay (ELISA) and electrochemical sensors are also in use. As the current testing methods are mostly performed at central hospitals and third-party testing centres, the testing systems used mostly employ large, high-throughput, automated equipment. Given the current situation of the epidemic, point-of-care testing (POCT) is advantageous in terms of its ease of use, greater approachability on the user's end, more timely detection, and comparable accuracy and sensitivity, which could reduce the testing load on central hospitals. POCT is thus conducive to daily epidemic control and achieving early detection and treatment. This paper summarises the latest research advances in POCT-based SARS-CoV-2 detection methods, compares three categories of commercially available products, i.e., nucleic acid tests, immunoassays and novel sensors, and proposes the expectations for the development of POCT-based SARS-CoV-2 detection including greater accessibility, higher sensitivity and lower costs.


Assuntos
COVID-19 , Humanos , Técnicas de Amplificação de Ácido Nucleico , Testes Imediatos , SARS-CoV-2 , Sensibilidade e Especificidade
12.
Micromachines (Basel) ; 11(12)2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33260653

RESUMO

Lung-on-a-chip devices could provide new strategies for a biomimetic lung cell microenvironment and construction of lung disease models in vitro, and are expected to greatly promote the development of drug evaluation, toxicological detection, and disease model building. In this study, we developed a novel poly (lactic-co-glycolic acid) (PLGA) nanofiber/polydimethylsiloxane (PDMS) microporous composite membrane-sandwiched lung-on-a-chip to perform anti-tumor drug testing. The composite membrane was characterized, and the results showed that it was permeable to molecules and thus could be used to study small-molecule drug diffusion. In addition, the microchip could apply perfusion fluids to simulate blood flow under extremely low fluid shear stress, and could also simulate the spherical-like shape of the alveoli by deformation of the composite membrane. Using this chip, we evaluated the anti-tumor drug efficacy of gefitinib in two kinds of non-small cell lung cancer cells, the lung adenocarcinoma NCI-H1650 cell line and the large cell lung cancer NCI-H460 cell line. We further probed the resistance of NCI-H460 cells to gefitinib under normoxic and hypoxic conditions. The established composite membrane-sandwiched lung chip can simulate more biochemical and biophysical factors in the lung physiological and pathological microenvironment, and it has important applications in the personalized treatment of lung tumors. It is expected to play a potential role in clinical diagnosis and drug screening.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...